If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15=18x
We move all terms to the left:
3x^2+15-(18x)=0
a = 3; b = -18; c = +15;
Δ = b2-4ac
Δ = -182-4·3·15
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-12}{2*3}=\frac{6}{6} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+12}{2*3}=\frac{30}{6} =5 $
| 2x=4(x+1)=6(x+2/3) | | 10+5a=7a+2 | | 150+.50x=60+.80x | | X^-4+5x^-2-36=0 | | 63/x=7/2 | | 90=1500•r•2 | | 2x=4(x+1)+6(x+2/3) | | 2t+1/2t-t+8=11 | | p-1/4=7/8p | | 3(-a+2a-4)=-5 | | 6y+2y-20=8y-444 | | 19=0.21x=486.64 | | 4/5=x-6/5 | | x²+10=-9 | | -4/5f+1=13 | | -91=(4x+7(3x+12) | | 6x+8/2-4=3x | | X^-4+5x-2-36=0 | | b/13-5b/13=8/13 | | 6=(1/5w)+(7/5w)-4 | | 30-6r=-3(r-8) | | 4p-30/2=4 | | x^2+2=147 | | 2(3x-4)=40+2x | | a^2+3a=15 | | x=5(6)=15 | | 3/6-1/8=n/4 | | 1-2-2x=-x-3+2+x | | 9-x-8+6x=1-3x | | 30(10)=x | | 4q+3=2q-40 | | 4^(2x+1)=7 |